An introduction to Krivine realizability

Alexandre Miquel

July 20th, 2016 - Piriápolis

What is classical realizability?

- Complete reformulation of the principles of Kleene realizability to take into account classical reasoning [Krivine 2009]
- Based on Griffin's discovery about the connection between classical reasoning an control operators (call/cc)

$$
\begin{equation*}
\text { call/cc : }((A \Rightarrow B) \Rightarrow A) \Rightarrow A \tag{Peirce'slaw}
\end{equation*}
$$

- Interprets the Axiom of Dependent Choices (DC)
- Initially designed for PA2, but extends to:
- Higher-order arithmetic (PA ω)
- Zermelo-Fraenkel set theory (ZF)
[K. 2001, 2012]
- The calculus of inductive constructions (CIC) [M. 2007] (with classical logic in Prop)
- Deep connections with Cohen forcing
[K. 2011]
$\rightsquigarrow \quad$ can be used to define new models of PA2/ZF
[K. 2012]
(1) Introduction
(2) Second-order arithmetic (PA2)
(3) The λ_{c}-calculus
(4) Realizability interpretation
(5) Adequacy
(6) Witness extraction

Plan

(1) Introduction
(2) Second-order arithmetic (PA2)
(3) The λ_{c}-calculus

4 Realizability interpretation
(5) Adequacy
(6) Witness extraction

The language of (minimal) second-order logic

- Second-order logic deals with two kinds of objects:
- 1st-order objects $=$ individuals (i.e. basic objects of the theory)
- 2nd-order objects $=k$-ary relations over individuals

First-order terms and formulas

First-order terms

$$
\begin{aligned}
& e, e^{\prime}::=x \mid f\left(e_{1}, \ldots, e_{k}\right) \\
& A, B::=x\left(e_{1}, \ldots, e_{k}\right) \mid \quad A \Rightarrow B \\
&|\forall x A| \forall X A
\end{aligned}
$$

- Two kinds of variables
- 1st-order vars: x, y, z, \ldots
- 2nd-order vars: X, Y, Z, \ldots of all arities $k \geq 0$
- Two kinds of substitution:
- 1st-order subst.: $e\left\{x:=e_{0}\right\}, \quad A\left\{x:=e_{0}\right\} \quad$ (defined as usual)
- 2nd-order subst.: $\quad A\left\{X:=P_{0}\right\}, \quad P\left\{X:=P_{0}\right\}$
- Defined from a first-order signature Σ (as usual):

First-order terms $\quad e, e^{\prime} \quad::=x \mid f\left(e_{1}, \ldots, e_{k}\right)$

- f ranges over k-ary function symbols in Σ
- In what follows we assume that:
(1) Each k-ary function symbol f is interpreted in IN by a function

$$
f^{\mathbb{N}}: \mathbb{N}^{k} \rightarrow \mathbb{I N}
$$

(2) The signature Σ contains at least a function symbol for every primitive recursive function ($0, s$, pred, $+,-, \times, /, \bmod , \ldots$), each of them being interpreted the standard way

- Denotation (in $\mathbb{I N}$) of a closed first-order term e written $e^{\mathbb{N}}$

Formulas

- Formulas of minimal second-order logic

$$
\text { Formulas } \quad \begin{aligned}
A, B::= & X\left(e_{1}, \ldots, e_{k}\right) \mid \quad A \Rightarrow B \\
& |\forall x A| \forall X A
\end{aligned}
$$

only based on implication and 1st/2nd-order universal quantification

- Other connectives/quantifiers defined via second-order encodings:

$$
\begin{aligned}
\perp & \equiv \forall Z Z \\
\neg A & \equiv A \Rightarrow \perp \\
A \wedge B & \equiv \forall Z((A \Rightarrow B \Rightarrow Z) \Rightarrow Z) \\
A \vee B & \equiv \forall Z((A \Rightarrow Z) \Rightarrow(B \Rightarrow Z) \Rightarrow Z) \\
\exists x A(x) & \equiv \forall Z(\forall x(A(x) \Rightarrow Z) \Rightarrow Z) \\
\exists X A(X) & \equiv \forall Z(\forall X(A(X) \Rightarrow Z) \Rightarrow Z) \\
e_{1}=e_{2} & \equiv \forall Z\left(Z\left(e_{1}\right) \Rightarrow Z\left(e_{2}\right)\right)
\end{aligned}
$$

(absurdity) (negation)
(conjunction) (disjunction)
(1st-order \exists)
(2nd-order \exists)
(Leibniz equality)

Predicates

- Concrete relations are represented using predicates
(syntactic sugar)

Predicates
 $P, Q \quad::=\quad \hat{x}_{1} \cdots \hat{x}_{k} A_{0}$
 (of arity k)

Definition (Predicate application and 2nd-order substitution)

(1) $P\left(e_{1}, \ldots, e_{k}\right)$ is the formula defined by

$$
P\left(e_{1}, \ldots, e_{k}\right) \equiv A_{0}\left\{x_{1}:=e_{1}, \ldots, x_{k}:=e_{k}\right\}
$$

where $P \equiv \hat{x}_{1} \cdots \hat{x}_{k} A_{0}$, and where e_{1}, \ldots, e_{k} are k first-order terms
(3) 2nd-order substitution $A\{X:=P\}$ (where X and P are of the same arity k) consists to replace in the formula A every atomic sub-formula of the form

$$
X\left(e_{1}, \ldots, e_{k}\right) \quad \text { by the formula } \quad P\left(e_{1}, \ldots, e_{k}\right)
$$

- Note: Every k-ary 2 nd-order variable X can be seen as a predicate:

$$
X \equiv \hat{x}_{1} \cdots \hat{x}_{k} X\left(x_{1}, \ldots, x_{k}\right)
$$

Unary predicates as sets

- Unary predicates represent sets of individuals Syntactic sugar: $\quad\{x: A\} \equiv \hat{x} A, \quad e \in P \equiv P(e)$

Example: The set \mathbb{N} of Dedekind numerals

$\mathbb{N} \equiv\{x: \forall Z(0 \in Z \Rightarrow \forall y(y \in Z \Rightarrow s(y) \in Z) \Rightarrow x \in Z\}$

- Relativized quantifications:

$$
\begin{aligned}
(\forall x \in P) A(x) & \equiv \forall x(x \in P \Rightarrow A(x)) \\
(\exists x \in P) A(x) & \equiv \forall Z(\forall x(x \in P \Rightarrow A(x) \Rightarrow Z) \Rightarrow Z) \\
& \Leftrightarrow \exists x(x \in P \wedge A(x))
\end{aligned}
$$

- Inclusion and extensional equality:

$$
\begin{aligned}
& P \subseteq Q \equiv \forall x(x \in P \Rightarrow x \in Q) \\
& P=Q \equiv \forall x(x \in P \Leftrightarrow x \in Q)
\end{aligned}
$$

- Set constructors:

$$
\begin{equation*}
P \cup Q \equiv\{x: x \in P \vee x \in Q\} \tag{etc.}
\end{equation*}
$$

Natural deduction for classical 2nd-order logic

Rules of system NK2

$$
\begin{array}{cc}
\overline{\Gamma \vdash A} A \in \Gamma & \overline{\Gamma \vdash((A \Rightarrow B) \Rightarrow A) \Rightarrow A} \\
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} & \frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B} \\
\frac{\Gamma \vdash A}{\Gamma \vdash \forall x A} \times \notin F V(\Gamma) & \frac{\Gamma \vdash \forall x A}{\Gamma \vdash A\{x:=e\}} \\
\frac{\Gamma \vdash A}{\Gamma \vdash \forall X A} \times \notin F V(\Gamma) & \frac{\Gamma \vdash \forall X A}{\Gamma \vdash A\{X:=P\}}
\end{array}
$$

- From these rules, one can derive the introduction \& elimination rules for $\perp, \wedge, \vee, \exists^{1}, \exists^{2}$, = using their 2nd-order definition
- Classical logic obtained via Peirce's law: $\quad((A \Rightarrow B) \Rightarrow A) \Rightarrow A$
- Elimination rule for 2 nd-order \forall implies all comprehension axioms:

$$
\forall \vec{z} \forall \vec{Z} \exists X \forall \vec{x}[X(\vec{x}) \Leftrightarrow A(\vec{x}, \vec{z}, \vec{Z})]
$$

A type system for classical 2nd-order logic

- Represent the computational contents of classical proofs using Curry-style proof terms, with call/cc for classical logic:

$$
t, u \quad:=x|\lambda x \cdot t| t u \mid \propto
$$

- Typing judgement: $\underbrace{x_{1}: A_{1}, \ldots, x_{n}: A_{n}}_{\text {typing context } \Gamma} \vdash t: B$

Typing rules

$$
\begin{array}{cc}
\overline{\Gamma \vdash x: A}(x: A) \in \Gamma & \Gamma \vdash \propto:((A \Rightarrow B) \Rightarrow A) \Rightarrow A \\
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x \cdot t: A \Rightarrow B} & \frac{\Gamma \vdash t: A \Rightarrow B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B} \\
\frac{\Gamma \vdash t: A}{\Gamma \vdash t: \forall x A} \times \notin F V(\Gamma) & \frac{\Gamma \vdash t: \forall x A}{\Gamma \vdash t: A\{x:=e\}} \\
\frac{\Gamma \vdash t: A}{\Gamma \vdash t: \forall X A} x \notin F V(\Gamma) & \frac{\Gamma \vdash t: \forall X A}{\Gamma \vdash t: A\{X:=P\}}
\end{array}
$$

Note: \forall interpreted uniformly; type checking/inference undecidable

From the derivation to the proof term

- Deduction system NK2 and type system λ NK2 are equivalent: $A_{1}, \ldots, A_{n} \vdash_{\mathrm{NK} 2} A$ iff $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash_{\mathrm{NK} 2} t: A \quad$ for some t

$$
\lambda f \cdot \lambda g \cdot \lambda u \cdot g(f u)
$$

Typing examples

- Intuitionistic principles:

$$
\begin{aligned}
& \text { pair } \equiv \lambda x y z . z x y: \quad \forall X \forall Y(X \Rightarrow Y \Rightarrow X \wedge Y) \\
& \text { fst } \equiv \lambda z \cdot z(\lambda x y \cdot x): \forall X \forall Y(X \wedge Y \Rightarrow X) \\
& \text { snd } \equiv \lambda z \cdot z(\lambda x y \cdot y): \forall X \forall Y(X \wedge Y \Rightarrow Y) \\
& \text { refl } \equiv \lambda z . z \quad: \quad \forall x(x=x) \\
& \text { trans } \equiv \lambda x y z \cdot y(x z): \forall x \forall y \forall z(x=y \Rightarrow y=z \Rightarrow x=z)
\end{aligned}
$$

- Excluded middle, double negation elimination:

$$
\begin{aligned}
\text { left } & \equiv \lambda x u v \cdot u x: \forall X \forall Y(X \Rightarrow X \vee Y) \\
\text { right } & \equiv \lambda y u v \cdot v y: \forall X \forall Y(Y \Rightarrow X \vee Y) \\
\text { EM } & \equiv \propto(\lambda k \cdot \operatorname{right}(\lambda x \cdot k(\operatorname{left} x))): \quad \forall X(X \vee \neg X) \\
\text { DNE } & \equiv \lambda z \cdot \propto(\lambda k \cdot z k): \quad \forall X(\neg \neg X \Rightarrow X)
\end{aligned}
$$

- De Morgan laws:

$$
\begin{array}{rcc}
\lambda z y \cdot z(\lambda x \cdot y x) & : & \exists x A(x) \Rightarrow \neg \forall x \neg A(x) \\
\lambda z y \cdot \propto(\lambda k \cdot z(\lambda x \cdot k(y x))) & : & \neg x \neg A(x) \Rightarrow \exists x A(x)
\end{array}
$$

Axioms of classical 2nd-order arithmetic (PA2)

- Defining equations of all primitive recursive functions:

$$
\begin{array}{ll}
\forall x(x+0=x) & \forall x(x \times 0=0) \\
\forall x \forall y(x+s(y)=s(x+y)) & \forall x \forall y(x \times s(y)=x \times y+x) \\
\forall x(\operatorname{pred}(0)=0) & \forall x(x-0=0) \\
\forall x(\operatorname{pred}(s(x))=x) & \forall x \forall y(x-s(y))=\operatorname{pred}(x-y) \quad \text { etc. }
\end{array}
$$

- Peano axioms:
(P3) $\quad \forall x \forall y(s(x)=s(y) \Rightarrow x=y)$
(P4) $\quad \forall x \neg(s(x)=0)$
(P5) $\quad \forall x(x \in \mathbb{N})$
- Remark: Induction is now a single axiom: (thanks to 2nd-order \forall)

$$
\begin{aligned}
\text { Ind } & \equiv \forall x(x \in \mathbb{N}) \\
& \equiv \forall Z[0 \in Z \Rightarrow \forall y(y \in Z \Rightarrow s(y) \in Z) \Rightarrow \forall x(x \in Z)]
\end{aligned}
$$

The problem of induction

- Problem: Induction axiom Ind $\equiv \forall x(x \in \mathbb{N})$ is not realizable! (Due to uniform interpretation of \forall)
- Solution: Restrict to PA^{-}:= PA2 - Ind and relativize all 1st-order quantifications to $\mathbb{I N}$:

Non-relativized

$$
\begin{array}{ccc}
\forall x A(x) & \rightsquigarrow & (\forall x \in \mathbb{N}) A(x) \\
& & \forall x(x \in \mathbb{N} \Rightarrow A(x)) \\
\exists x A(x) & \rightsquigarrow & (\exists x \in \mathbb{N}) A(x) \\
\forall Z(\forall x(A(x) \Rightarrow Z) \Rightarrow Z) & & \forall Z(\forall x(x \in \mathbb{N} \Rightarrow A(x) \Rightarrow Z) \Rightarrow Z)
\end{array}
$$

Theorem

If $\mathrm{PA} 2 \vdash A$, then $\quad \mathrm{PA}^{-} \vdash A^{\mathbb{N}} \quad\left(A^{\mathbb{N}}=A\right.$ relativized to $\left.\mathbb{N}\right)$
Requires to check that PA2 $^{-} \vdash\left(\forall x_{1}, \ldots, x_{k} \in \mathbb{N}\right)\left(f\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{I N}\right)$ for all primitive recursive function symbols f

The full standard model of PA2

- Full standard model of PA2 $=$ Tarski model \mathscr{M} in which:
- 1st-order variables x are interpreted by natural numbers $n \in \mathbb{I N}$
- 2nd-order variables X are interpreted by all relations $R \subseteq \mathfrak{P}\left(\mathbb{N}^{k}\right)$
(\Rightarrow, \forall are given the usual Tarski interpretation)

Theorem (Soundness)

If $\mathrm{PA} 2 \vdash A$, then $\mathscr{M} \models A$

- More generally, we say that a Tarski model \mathscr{M} of PA2 is:
- Standard when $\mathbb{N}^{\mathscr{M}}=\mathbb{I N}$

In general, we only have $\mathbb{N}^{\mathscr{M}} \supset \mathbb{N} \quad$ (non standard elements)

- Full when $\left(\operatorname{Rel}^{k} \mathbb{I N}^{\prime}\right)^{\mathscr{M}}=\mathfrak{P}\left(\left(\mathbb{N}^{M}\right)^{k}\right)$

In general, we only have $\left(\operatorname{Rel}^{k} \mathbb{I N}\right)^{\mathscr{M}} \subset \mathfrak{P}\left(\left(\mathbb{N}^{\mathscr{M}}\right)^{k}\right)$ (may be countable)

- The full standard model of PA2 is unique, up to unique isomorphism (in the sense of models), but it is uncountable

Plan

(1) Introduction
(2) Second-order arithmetic (PA2)
(3) The λ_{c}-calculus

4 Realizability interpretation
(5) Adequacy
(6) Witness extraction

Terms, stacks and processes

- Syntax of the language parameterized by
- A countable set $\mathcal{K}=\{\propto ; \ldots\}$ of instructions, containing at least the instruction \propto (call/cc)
- A countable set Π_{0} of stack constants (or stack bottoms)

Terms, stacks and processes										
Terms	t, u	$::=$	x	\mid	$\lambda x . t$	\mid	$t u$	\mid	κ	\mid
k_{π}	$(\kappa \in \mathcal{K})$									
Stacks	π, π^{\prime}	$::=$	α	\mid	$t \cdot \pi$					$\left(\alpha \in \Pi_{0}, t\right.$ closed $)$
Processes	p, q	$::=$	$t \star \pi$							$(t$ closed $)$

- A λ-calculus with two kinds of constants:
- Instructions $\kappa \in \mathcal{K}$, including \propto
- Continuation constants k_{π}, one for every stack $\pi \quad$ (generated by \propto)
- Notation: $\Lambda, \Pi, \Lambda \star \Pi$ (sets of closed terms / stacks / processes)

Proof-like terms

- Proof-like term \equiv Term containing no continuation constant

$$
\text { Proof-like terms } \quad t, u \quad::=x \left\lvert\, \begin{array}{ll|l|ll}
& \\
\hline
\end{array}\right.
$$

- Idea: All realizers coming from actual proofs are of this form, continuation constants k_{π} are treated as paraproofs
- Notation: PL \equiv set of closed proof-like terms
- Natural numbers encoded as proof-like terms by:

Krivine numerals

$$
\bar{n} \equiv \bar{s}^{n} \overline{0} \in \mathrm{PL} \quad(n \in \mathbb{N})
$$

writing $\overline{0} \equiv \lambda x y \cdot x \quad$ and $\quad \bar{s} \equiv \lambda n x y . y(n x y)$

- Note: Krivine numerals $\not \equiv$ Church numerals, but β-equivalent

The Krivine Abstract Machine (KAM)

- We assume that the set $\Lambda \star \Pi$ comes with a preorder $p \succ p^{\prime}$ of evaluation satisfying the following rules:

- Evaluation not defined but axiomatized. The preorder $p \succ p^{\prime}$ is another parameter of the calculus, just like the sets \mathcal{K} and Π_{0}
- Extensible machinery: can add extra instructions and rules (We shall see examples later)

The Krivine Abstract Machine (KAM)

- Rules Push and Grab implement weak head β-reduction:

Push	$t u \star \pi$	\succ	$t \star u \cdot \pi$
Grab	$\lambda x \cdot t \star u \cdot \pi$	\succ	$t\{x:=u\} \star \pi$

- Example: $\quad(\lambda x y \cdot t) u v \star \pi \quad \lambda x y \cdot t \star u \cdot v \cdot \pi$ $\succ \quad t\{x:=u\}\{y:=v\} \star \pi$
- Rules Save and Restore implement backtracking:

Save Restore

$$
\begin{array}{cl}
\propto \star u \cdot \pi & \succ u \star \mathrm{k}_{\pi} \cdot \pi \\
\mathrm{k}_{\pi} \star u \cdot \pi^{\prime} & \succ u \star \pi
\end{array}
$$

- Instruction © most often used in the pattern

$$
\begin{aligned}
\propto(\lambda k \cdot t) \star \pi & \succ \propto \star(\lambda k \cdot t) \cdot \pi \\
& \succ(\lambda k \cdot t) \star \mathrm{k}_{\pi} \cdot \pi \\
& \succ t\left\{k:=\mathrm{k}_{\pi}\right\} \star \pi
\end{aligned}
$$

Representing functions

Definition (function representation)

A partial function $f: \mathbb{N}^{k} \rightharpoonup \mathbb{N}$ is represented by a λ_{c}-term $\widehat{f} \in \Lambda$ if

$$
\widehat{f} \star \bar{n}_{1} \cdots \bar{n}_{k} \cdot u \cdot \pi \quad \succ \quad u \star \overline{f\left(n_{1}, \ldots, n_{k}\right)} \cdot \pi
$$

for all $\left(n_{1}, \ldots, n_{k}\right) \in \operatorname{dom}(f)$ and for all $u \in \Lambda, \pi \in \Pi$

- Call by value encoding:
- Consumes k values and returns 1 value on the stack
- Control is given to the extra argument u (continuation, return block)
- Examples:

$$
\begin{aligned}
& \widehat{s}:=\lambda x k \cdot k(\bar{s} x) \\
& \hat{\widehat{s}}:=\lambda x y k \cdot y k\left(\lambda k^{\prime} z \cdot \widehat{s} z k\right) x \\
& \hat{x}:=\lambda x y k \cdot y k\left(\lambda k^{\prime} z \cdot \hat{+} z x k\right) \overline{0}
\end{aligned}
$$

Theorem (Representation of recursive functions)

All partial recursive functions are represented in the λ_{c}-calculus

Example of extra instructions

- Numbering terms (or stacks): the instruction quote:

$$
\text { quote } \star t \cdot u \cdot \pi \quad \succ \quad u \star \overline{\lceil t\rceil} \cdot \pi
$$

where $t \mapsto\lceil t\rceil$ is a fixed bijection from Λ to $\mathbb{I N}$

- Useful to realize the axiom of dependent choices (DC) [Krivine 03]
- Testing syntactic equality: the instruction eq:

$$
\text { eq } \star t_{1} \cdot t_{2} \cdot u \cdot v \cdot \pi \quad \succ \begin{cases}u \star \pi & \text { if } t_{1} \equiv t_{2} \\ v \star \pi & \text { if } t_{1} \not \equiv t_{2}\end{cases}
$$

- Can be implemented using quote
- Non-deterministic choice operator: the instruction fork:

$$
\text { fork } \star u \cdot v \cdot \pi \quad \succ \quad\left\{\begin{array}{l}
u \star \pi \\
v \star \pi
\end{array}\right.
$$

- Useful for pedagogy - bad for realizability

Example of extra instructions

- The instruction stop:

$$
\operatorname{stop} \star \pi \quad \nsucc
$$

Stops execution. Final result returned on the stack π

- The instruction print:

$$
\text { print } \star \bar{n} \cdot u \cdot \pi \quad \succ \quad u \star \pi
$$

(formal specification)
and prints integer n on standard output
(informal specification)

- Useful to display intermediate results without stopping the machine (Poor man's side effect)
- The instruction hace_mate:

$$
\text { hace_mate } \star u \cdot \pi \quad \succ \quad u \star \pi \quad+\quad \text { hace el mate }
$$

Plan

(1) Introduction
(2) Second-order arithmetic (PA2)
(3) The λ_{c}-calculus
(4) Realizability interpretation
(5) Adequacy
(6) Witness extraction

Classical realizability: principles

- Intuitions:
- term $=$ "proof" / stack $=$ "counter-proof"
- process $=$ "contradiction" (slogan: never trust a classical realizer!)
- Classical realizability model parameterized by a pole \Perp
$=$ set of processes closed under anti-evaluation
- Each formula A is interpreted as two sets:
- A set of stacks $\|A\|$ (falsity value)
- A set of terms $|A|$ (truth value)
- Falsity value $\|A\|$ defined by induction on A (negative interpretation)
- Truth value $|A|$ defined by orthogonality:

$$
|A|=\|A\|^{\Perp}=\{t \in \Lambda: \forall \pi \in\|A\| t \star \pi \in \Perp\}
$$

Architecture of the realizability model

- The realizability model \mathscr{M}_{\Perp} is defined from:
- The full standard model \mathscr{M} of PA2: the ground model
(but we could take any model \mathscr{M} of PA2 as well)
- An instance $\left(\mathcal{K}, \Pi_{0}, \succ\right)$ of the λ_{c}-calculus
- A saturated set of processes $\Perp \subseteq \Lambda \star \Pi$ (the pole)
- Architecture:
- First-order terms/variables interpreted as natural numbers $n \in \mathbb{N}$
- Formulas interpreted as falsity values $S \in \mathfrak{P}(П)$
- k-ary second-order variables (and k-ary predicates) interpreted as falsity functions $F: \mathbb{N}^{k} \rightarrow \mathfrak{P}(\Pi)$.

Formulas with parameters $\quad A, B \quad::=\cdots \quad \mid \dot{F}\left(e_{1}, \ldots, e_{k}\right)$
Add a predicate constant \dot{F} for every falsity function $F: \mathbb{N}^{k} \rightarrow \mathfrak{P}(\Pi)$

Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

- Falsity value $\|A\|$ defined by induction on A :

$$
\begin{aligned}
\left\|\dot{F}\left(e_{1}, \ldots, e_{k}\right)\right\| & =F\left(e_{1}^{\mathbb{N}}, \ldots, e_{k}^{\mathbb{N}}\right) \\
\|A \Rightarrow B\| & =|A| \cdot\|B\|=\{t \cdot \pi: t \in|A|, \quad \pi \in\|B\|\} \\
\|\forall x A\| & =\bigcup_{n \in \mathbb{N}}\|A\{x:=n\}\| \\
\|\forall X A\| & =\bigcup_{F: \mathbb{N}^{n} \rightarrow \mathfrak{P}(\square)}\|A\{X:=\dot{F}\}\|
\end{aligned}
$$

- Truth value $|A|$ defined by orthogonality:

$$
|A|=\|A\|^{\Perp}=\{t \in \Lambda \quad: \quad \forall \pi \in\|A\| \quad t \star \pi \in \Perp\}
$$

The realizability relation

Falsity value $\|A\|$ and truth value $|A|$ depend on the pole \Perp
$\rightsquigarrow \quad$ write them (sometimes) $\|A\| \Perp$ and $|A| \Perp$ to recall the dependency
Realizability relations

$$
\begin{aligned}
t \Vdash A & \equiv t \in|A|_{\Perp} \\
t \| \vdash A & \equiv \forall \Perp t \in|A|_{\Perp}
\end{aligned}
$$

(Realizability w.r.t. \Perp)
(Universal realizability)

From computation to realizability

Fundamental idea: The computational behavior of a term determines the formula(s) it realizes:

Example 1: A closed term t is identity-like if:

$$
t \star u \cdot \pi \quad \succ \quad u \star \pi \quad \text { for all } u \in \Lambda, \pi \in \Pi
$$

Proposition

If t is identity-like, then $\quad t \| \vdash \forall X(X \Rightarrow X)$
Proof: Exercise! (Remark: converse implication holds - exercise!)

- Examples of identity-like terms:
- $\lambda x . x,(\lambda x . x)(\lambda x . x)$, etc.
- $\lambda x . \propto(\lambda k . x), \quad \lambda x . \propto(\lambda k . k x), \quad \lambda x . \propto(\lambda k . k x \omega), \quad$ etc.
- λx. quote $x \lambda n$. unquote $n(\lambda z . z)$

From computation to realizability

Example 2: Control operators:

$$
\begin{aligned}
\propto \star t \cdot \pi & \succ t \star k_{\pi} \cdot \pi \\
k_{\pi} \star t \cdot \pi^{\prime} & \succ t \star \pi
\end{aligned}
$$

- "Typing" k_{π} :

$$
k_{\pi} \star t \cdot \pi^{\prime} \quad \succ \quad t \star \pi
$$

Lemma

If $\pi \in\|A\|$, then $\quad \mathrm{k}_{\pi} \Vdash A \Rightarrow B$
Proof: Exercise

- "Typing" ๔:

$$
\propto \star t \cdot \pi \quad \succ \quad t \star k_{\pi} \cdot \pi
$$

Proposition (Realizing Peirce's law)

$\propto \| \vdash((A \Rightarrow B) \Rightarrow A) \Rightarrow A$
Proof: Exercise

Anatomy of the model

- Denotation of universal quantification:
Falsity value: $\quad\|\forall x A\|=\bigcup_{n \in \mathbb{N}}\|A\{x:=n\}\|$ (by definition)

Truth value:

$$
|\forall x A|=\bigcap_{n \in \mathbb{N}}|A\{x:=n\}|
$$

(by orthogonality)
(and similarly for 2nd-order universal quantification)

- Denotation of implication:

Falsity value:
Truth value:
writing $|A| \rightarrow|B|=\{t \in \Lambda: \forall u \in|A| \quad t u \in|B|\}$
(by definition)
(by orthogonality)
(realizability arrow)

- Degenerate case: $\Perp=\varnothing$
- Classical realizability mimics the Tarski interpretation:

Degenerated interpretation

In the case where $\Perp=0$, for every closed formula A :

$$
|A|= \begin{cases}\Lambda & \text { if } \mathscr{M} \neq A \\ \varnothing & \text { if } \mathscr{M} \not \models A\end{cases}
$$

- Non degenerate cases: $\Perp \neq \varnothing$
- Every truth value $|A|$ is inhabited:

If $t_{0} \star \pi_{0} \in \Perp$, then $\mathrm{k}_{\pi_{0}} t_{0} \in|A| \quad$ for all A

- We shall only consider realizers that are proof-like terms ($\in \mathrm{PL}$)

Plan

(2) Second-order arithmetic (PA2)
(3) The λ_{c}-calculus

4 Realizability interpretation
(5) Adequacy
(6) Witness extraction

Adequacy

Aim: Prove the theorem of adequacy
$t: A$ (in the sense of $\lambda N K 2$) implies $t \Vdash A$ (in the sense of realizability)

- Closing typing judgments $\quad x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: A$
- We close logical objects (1st-order terms, formulas, predicates) using semantic objects (natural numbers, falsity values, falsity functions)
- We close proof-terms using realizers

Definition (Valuations)

(1) A valuation is a function ρ such that

- $\rho(x) \in \mathbb{N}$ for each 1st-order variable x
- $\rho(X): \mathbb{N}^{k} \rightarrow \mathfrak{P}(\Pi)$ for each 2 nd-order variable X of arity k
(2) Closure of A with ρ written $A[\rho]$
(formula with parameters)

Adequacy

Definition (Adequate judgment, adequate rule)

Given a fixed pole \Perp :
(1) A judgment $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: A$ is adequate if for every valuation ρ and for all $u_{1} \Vdash A_{1}[\rho], \ldots, u_{n} \Vdash A_{n}[\rho]$ we have:

$$
t\left\{x_{1}:=u_{1}, \ldots, x_{n}:=u_{n}\right\} \Vdash A[\rho]
$$

(2) A typing rule is adequate if it preserves the property of adequacy (from the premises to the conclusion of the rule)

Theorem

(1) All typing rules of $\lambda \mathrm{NK} 2$ are adequate
(2) All derivable judgments of $\lambda \mathrm{NK} 2$ are adequate

Corollary: If $\vdash t: A$ (A closed formula), then $t \Vdash \vdash A$

Extending adequacy to subtyping

Definition (Adequate subtyping judgment)

Judgment $A \leq B$ adequate $\equiv\|B[\rho]\| \subseteq\|A[\rho]\| \quad$ (for all valuations)
Remark: Implies $|A[\rho]| \subseteq|B[\rho]|$ (for all ρ), but strictly stronger

- Some adequate typing/subtyping rules:

$$
\begin{gathered}
\overline{A \leq A} \quad \frac{A \leq B \quad B \leq C}{A \leq C} \quad \frac{\Gamma \vdash t: A \quad A \leq B}{\Gamma \vdash t: B} \\
\overline{\forall \times A \leq A\{x:=e\}} \quad \overline{\forall X A \leq A\{X:=P\}} \\
\frac{A \leq B}{A \leq \forall \times B} \times \notin F V(A) \quad \frac{A \leq B}{A \leq \forall X B} \times \notin F V(A) \quad \frac{A^{\prime} \leq A \quad B \leq B^{\prime}}{A \Rightarrow B \leq A^{\prime} \Rightarrow B^{\prime}} \\
\overline{\forall \times(A \Rightarrow B) \leq A \Rightarrow \forall \times B} \times \notin F V(A) \quad \overline{\forall X(A \Rightarrow B) \leq A \Rightarrow \forall X B} \times \notin F V(A)
\end{gathered}
$$

- Example: $\underbrace{\forall X \forall Y(((X \Rightarrow Y) \Rightarrow X) \Rightarrow X)}_{\text {Peirce's law }} \leq \underbrace{\forall X(\neg \neg X \Rightarrow X)}_{\text {DNE }}$

Realizing equalities

- Equality between individuals defined by

$$
e_{1}=e_{2} \equiv \forall Z\left(Z\left(e_{1}\right) \Rightarrow Z\left(e_{2}\right)\right)
$$

(Leibniz equality)

Denotation of Leibniz equality

Given two closed first-order terms e_{1}, e_{2}

$$
\left\|e_{1}=e_{2}\right\|= \begin{cases}\|\mathbf{1}\|=\{t \cdot \pi:(t \star \pi) \in \Perp\} & \text { if } \llbracket e_{1} \rrbracket=\llbracket e_{2} \rrbracket \\ \|T \Rightarrow \perp\|=\Lambda \cdot \Pi & \text { if } \llbracket e_{1} \rrbracket \neq \llbracket e_{2} \rrbracket\end{cases}
$$

writing $\mathbf{1} \equiv \forall Z(Z \Rightarrow Z)$ and $T \equiv \dot{\varnothing}$

- Intuitions:
- A realizer of a true equality (in the model) behaves as the identity function $\lambda z . z$
- A realizer of a false equality (in the model) behaves as a point of backtrack (breakpoint)

Realizing axioms

Corollary 1 (Realizing true equations)

If

$$
\mathscr{M} \models \forall \vec{x}\left(e_{1}(\vec{x})=e_{2}(\vec{x})\right)
$$

then

$$
\mathbf{I} \equiv \lambda z \cdot z \| \vdash \forall \vec{x}\left(e_{1}(\vec{x})=e_{2}(\vec{x})\right)
$$

(truth in the ground model)
(universal realizability)

Corollary 2

All defining equations of primitive recursive function symbols $(+,-, \times, /, \bmod , \uparrow$, etc.) are universally realized by $\mathbf{I} \equiv \lambda z . z$

Corollary 3 (Realizing Peano axioms 3 and 4)

$$
\begin{array}{rll}
& \| & \forall x \forall y(s(x)=s(y) \Rightarrow x=y) \\
\lambda z . z \mathbf{I} & \| \vdash & \forall x \neg(s(x)=0)
\end{array}
$$

Theorem: If $\mathrm{PA}^{-} \vdash A$, then $\theta \| \vdash A$ for some $\theta \in \mathrm{PL}$

Realizing true Horn formulas

Definition (Horn formulas)

(1) A (positive/negative) literal is a formula L of the form

$$
L \equiv e_{1}=e_{2} \quad \text { or } \quad L \equiv e_{1} \neq e_{2}
$$

(2) A (positive/negative) Horn formula is a closed formula H of the form

$$
H \equiv \forall \vec{x}\left[L_{1} \Rightarrow \cdots \Rightarrow L_{p} \Rightarrow L_{p+1}\right] \quad(p \geq 0)
$$

where L_{1}, \ldots, L_{p} are positive; L_{p+1} positive or negative

Theorem (Realizing true Horn formulas)

If $\mathscr{M} \models H$, then:

$$
\begin{array}{rlll}
& \mathbf{I} \equiv \lambda z \cdot z & \| \vdash & H \\
\lambda z_{1} \cdots z_{p+1} \cdot z_{1}\left(\cdots\left(z_{p+1} \mathbf{I}\right) \cdots\right) & \| \vdash & H & \text { (if } H \text { positive) } \\
\text { (if } H \text { negative) }
\end{array}
$$

- All axioms of $\mathrm{PA}^{-}:=\mathrm{PA} 2$ - Ind are Horn formulas
- Quantifications not relativized to IN $\rightsquigarrow H$ holds for all individuals

Provability, universal realizability and truth

- From what precedes:
(1) A provable $\Rightarrow A$ universally realized
(by a proof-like term)
(2) A universally realized $\Rightarrow A$ true (in the full standard model)
\rightsquigarrow Universal realizability: an intermediate notion between provability and truth
- Beware!

Intuitionistic proofs of $A \subseteq$ Classical proofs of A $\begin{array}{ccc}\cap & \cap \\ \text { Intuitionistic realizers of } A & \neq & \text { Classical realizers of } A\end{array}$

Program extraction

Extracting a program from a proof in PA2

If $\mathrm{PA} 2 \vdash A$, then there is $\theta \in \mathrm{PL}$ such that $\theta \| \vdash A^{\mathbb{N}}$
($A^{\mathbb{N}}$ obtained from A by relativizing all 1st-order quantifications to $\mathbb{I N}$)

- In practice:
- Only apply the adequacy theorem to the computationally relevant parts of the proof
- For the computationally irrelevant parts (i.e. Horn formulas), use 'default realizers' \rightsquigarrow realizer optimization
- Example 1: $\quad \lambda x y . I \| \vdash(\forall x, y \in \mathbb{N})(x+y=y+x)$
- Example 2: Fermat's last theorem ${ }^{1}$

$$
(\forall x, y, z, n \in \mathbb{N})\left(x \geq 1 \Rightarrow y \geq 1 \Rightarrow n \geq 3 \Rightarrow x^{n}+y^{n} \neq z^{n}\right)
$$

1. realized by: $\lambda x y z n u_{1} u_{2} u_{3} v . u_{1}\left(u_{2}\left(u_{3}(v \mathbf{I})\right)\right)$

Plan

(1) Introduction
(2) Second-order arithmetic (PA2)
(3) The λ_{c}-calculus

4 Realizability interpretation
(5) Adequacy
(6) Witness extraction

Some problems of classical realizability

(1) The specification problem

Given a formula A, characterize its universal realizers from their computational behavior Specifying Peirce's law [Guillermo-M. 2014]
(2) Witness extraction from classical realizers
(3) Realizability algebras + Cohen forcing

$$
\begin{array}{r}
\text { Realizability algebras: a program to well-order } \mathbb{R} \text { [Krivine 2011] } \\
\text { Forcing as a program transformation }[\mathrm{M} .2011]
\end{array}
$$

- Models induced by classical realizability

What are the interesting formulas that are realized in \mathscr{M}_{\Perp} that are not already true in the ground model \mathscr{M} ?

Realizability algebras II: new models of ZF + DC [Krivine 2012]

The problem of witness extraction

- Problem: Extract a witness from a universal realizer (or a proof)

$$
t_{0} \| \vdash(\exists x \in \mathbb{N}) A(x)
$$

i.e. some $n \in \mathbb{N}$ such that $A(n)$ is true

- This is not always possible!

$$
t_{0} \| \vdash(\exists x \in \mathbb{N})((x=1 \wedge C) \vee(x=0 \wedge \neg C))
$$

($C=$ Continuum hypothesis, Goldbach's conjecture, etc.)

- Two possible compromises:
- Intuitionistic logic: restrict the shape of the realizer t_{0} (by only keeping intuitionistic reasoning principles)
- Classical logic: restrict the shape of the formula $A(x)$ (typically: Δ_{0}^{0}-formulas)

Storage operators

- The call-by-value implication:

$$
\begin{array}{lcl:l}
\text { Formulas } & A, B \quad:= & \cdots & \mid e\} \Rightarrow A \\
\text { with the semantics: } & \|\{e\} \Rightarrow A\|=\left\{\bar{n} \cdot \pi: n=e^{\mathbb{N}}, \pi \in\|A\|\right\}
\end{array}
$$

- From the definition: $\quad e \in \mathbb{N} \Rightarrow A \leq\{e\} \Rightarrow A$ so that: $\quad 1 \| \forall \forall x \forall Z[(x \in \mathbb{N} \Rightarrow Z) \Rightarrow(\{x\} \Rightarrow Z)] \quad$ (direct implication)

Definition (Storage operator)

A storage operator is a closed proof-like term M such that:

$$
M \| \vdash \forall x \forall Z[(\{x\} \Rightarrow Z) \Rightarrow(x \in \mathbb{N} \Rightarrow Z)] \quad \text { (converse implication) }
$$

Theorem (Existence)

Storage operators exist, e.g.: $M:=\lambda f n . n f(\lambda h x . h(\bar{s} x)) \overline{0}$

Storage operators

- Intuitively, a storage operator

$$
M \| \vdash \forall x \forall Z[(\{x\} \Rightarrow Z) \Rightarrow(x \in \mathbb{N} \Rightarrow Z)]
$$

is a proof-like term that is intended to be applied to

- a function f that only accepts values (i.e. intuitionistic integers)
- a classical integer $t \Vdash n \in \mathbb{N} \quad$ (n arbitrary)
and that evaluates (or 'smoothes') the classical integer t into a value of the form \bar{n} before passing this value to f
- By subtyping, we also have:

$$
M \| \vdash \forall Z[\forall x(\{x\} \Rightarrow Z(x)) \Rightarrow(\forall x \in \mathbb{N}) Z(x)]
$$

This means that if a property $Z(x)$ holds for all intuitionistic integers, then it holds for all classical integers too

- Conclusion: $\quad e \in \mathbb{N} \Rightarrow A$ and $\{e\} \Rightarrow A$ interchangeable

Computing with storage operators

- Given a k-ary function symbol f, we let:

$$
\begin{aligned}
\operatorname{Total}(f) & :=\left(\forall x_{1} \in \mathbb{N}\right) \cdots\left(\forall x_{k} \in \mathbb{N}\right)\left(f\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{N}\right) \\
\operatorname{Comput}(f):= & \forall x_{1} \cdots \forall x_{k} \forall Z\left[\left\{x_{1}\right\} \Rightarrow \cdots \Rightarrow\left\{x_{k}\right\} \Rightarrow\right. \\
& \left.\quad\left(\left\{f\left(x_{1}, \ldots, x_{k}\right)\right\} \Rightarrow Z\right) \Rightarrow Z\right]
\end{aligned}
$$

Theorem (Specification of the formula Comput (f))

For all $t \in \Lambda$, the following assertions are equivalent:
(1) $t \| \vdash \operatorname{Comput}(f)$
(c) t computes f : for all $\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}, u \in \Lambda, \pi \in \Pi$:

$$
t \star \bar{n}_{1} \cdots \bar{n}_{k} \cdot u \cdot \pi \succ u \star \overline{f\left(n_{1}, \ldots, n_{k}\right)} \cdot \pi
$$

- Using a storage operator M, we can build proof-like terms:

$$
\begin{array}{lllll}
\xi_{k} & \| \vdash & \operatorname{Total}(f) & \Rightarrow & \operatorname{Comput}(f) \\
\xi_{k}^{\prime} & \| \vdash & \operatorname{Comput}(f) & \Rightarrow & \operatorname{Total}(f)
\end{array}
$$

- A classical realizer $t_{0} \| \vdash(\exists x \in \mathbb{N}) A(x)$ always evaluates to a pair witness/justification:

Naive extraction

If $t_{0} \| \vdash(\exists x \in \mathbb{N}) A(x)$, then there are $n \in \mathbb{N}$ and $u \in \Lambda$ such that:

$$
t_{0} \star M(\lambda x y . \text { stop } x y) \cdot \pi \quad \succ \quad \text { stop } \star \bar{n} \cdot u \cdot \pi
$$

(where $u \Vdash A(n)$ w.r.t. the particular pole $\Perp \ldots$ needed to prove the property)

- But $n \in \mathbb{N}$ might be a false witness because the justification $u \Vdash A(n)$ is cheating! (u might contain hidden continuations)
- In the case where t_{0} comes from an intuitionistic proof, extracted witness $n \in \mathbb{N}$ is always correct (Can be proved using Kleene realizability adapted to PA^{-})

$$
\begin{aligned}
& \text { Extraction in the } \sum_{1}^{0} \text {-case }(+ \text { display intermediate results }) \\
& \begin{array}{l}
\text { If } t_{0} \| \vdash(\exists x \in \mathbb{N})(f(x)=0), \text { then } \\
t_{0} \star M(\lambda x y . \text { print } x y(\operatorname{stop} x)) \cdot \pi \quad \succ \text { stop } \star \bar{n} \cdot \pi
\end{array}
\end{aligned}
$$

for some $n \in \mathbb{N}$ such that $f(n)=0$

- Storage operator M used to evaluate 1 st component (x)
- 2nd component (y) used as a breakpoint (Relies on the particular structure of equality realizers)
- Holds independently from the instruction set
- Supports any representation of numerals (One has to implement the storage operator M accordingly)

Example: the minimum principle

- Given a unary function symbol f, write:

$$
\begin{aligned}
\text { Total }(f) & :=(\forall x \in \mathbb{N})(f(x) \in \mathbb{N}) & \text { (totality predicate) } \\
x \leq y & :=x-y=0 & \text { (truncated subtraction) }
\end{aligned}
$$

Theorem (Minimum principle - MinP)

$$
\mathrm{PA}^{-} \vdash \operatorname{Total}(f) \Rightarrow(\exists x \in \mathbb{N}) \underbrace{(\forall y \in \mathbb{N})(f(x) \leq f(y))}_{\text {undecidable }}
$$

Proof. Reductio ad absurdum + course by value induction

- The minimum principle is not intuitionistically provable (oracle)
- We cannot apply the Σ_{1}^{0}-extraction technique to the above proof (applied to a totality proof of f), since the conclusion is Σ_{2}^{0}

The body $\quad(\forall y \in \mathbb{N})(f(x) \leq f(y))$ of \exists-quantification is undecidable

Using the minimum principle to prove a Σ_{1}^{0}-formula

- Idea: The value x given by the minimum principle can be used to prove a Σ_{1}^{0}-formula, so that we can perform program extraction:

Corollary

$$
\mathrm{PA}^{-} \vdash \operatorname{Total}(f) \Rightarrow(\exists x \in \mathbb{N}) \underbrace{(f(x) \leq f(2 x+1))}_{\text {decidable }}
$$

More generally: PA2- $\vdash \operatorname{Total}(f) \wedge \operatorname{Total}(g) \Rightarrow(\exists x \in \mathbb{N})(f(x) \leq f(g(x)))$

Proof. Take the point x given by the minimum principle

- Applying Σ_{1}^{0}-extraction to the above non-constructive proof, we get a correct witness in finitely many evaluation steps
- How is this witness computed?

The algorithm underlying Σ_{1}^{0}-extraction

Transcript of the extraction process

Take $\quad f(x)=|x-1000|$
(real minimum at $x=1000$)
and apply Σ_{1}^{0}-extraction to the proof of $(\exists x \in \mathbb{N})(f(x) \leq f(2 x+1))$
Step 1 Oracle says: take $x=0 \quad$ since $(\forall y \in \mathbb{N})(f(0) \leq f(y)) \quad$ (false)
Corollary says: take $x=0$ since $f(0) \leq f(1)$
(false)
Σ_{1}^{0}-extractor evaluates incorrect justification and backtracks
Step 2 Oracle says: take $x=1 \quad$ since $(\forall y \in \mathbb{I N})(f(1) \leq f(y)) \quad$ (false)
Corollary says: take $x=1$ since $f(1) \leq f(3) \quad$ (false)
Σ_{1}^{0}-extractor evaluates incorrect justification and backtracks
Step 3 Oracle says: take $x=3 \quad$ since $(\forall y \in \mathbb{N})(f(3) \leq f(y)) \quad$ (false)
Corollary says: take $x=3$ since $f(3) \leq f(7) \quad$ (false)
Σ_{1}^{0}-extractor evaluates incorrect justification and backtracks
Step 4 Oracle says: take $x=7 \quad$ since $(\forall y \in \mathbb{N})(f(7) \leq f(y)) \quad$ (false)
Step 11 Oracle says: take $x=1023$ since $(\forall y \in \mathbb{N})(f(1023) \leq f(y))$ (false)
Corollary says: take $x=1023$ since $f(1023) \leq f(2047) \quad$ (true)
Σ_{1}^{0}-extractor evaluates correct justification and returns $x=1023$
Note that answer $x=1023$ is correct... but not the point where f reaches its minimum

Definition (Conditional refutation)

$r_{A} \in \Lambda$ is a conditional refutation of the predicate $A(x)$ if
For all $n \in \mathbb{N}$ such that $\mathscr{M} \not \models A(n): r_{A} \bar{n} \| \vdash \neg A(n)$

- Such a conditional refutation can be constructed for every predicate $A(x)$ of 1st-order arithmetic

This result is a consequence of the following

Theorem (Realizing true arithmetic formulas)

For every formula $A\left(x_{1}, \ldots, x_{k}\right)$ of 1st-order arithmetic, there exists a closed proof-like term t_{A} such that:

$$
\text { If } \mathscr{M} \models A\left(n_{1}, \ldots, n_{k}\right) \text {, then } t_{A} \bar{n}_{1} \cdots \bar{n}_{k} \| \vdash A\left(n_{1}, \ldots, n_{k}\right)
$$

(for all $n_{1}, \ldots, n_{k} \in \mathbb{N}$)

Let
(1) t_{0} ॥| $(\exists x \in \mathbb{N}) A(x)$
(2) r_{A} a conditional refutation of the predicate $A(x)$

Then the process

$$
t_{0} \star M\left(\lambda x y \cdot \operatorname{print} x\left(r_{A} x y\right)\right) \cdot \pi
$$

displays a correct witness after finitely many evaluation steps

- Remark: No correctness invariant is ensured as soon as the (first) correct witness has been displayed!

After, anything may happen: crash, infinite loop, displaying incorrect witnesses, etc.
(Kamikaze behavior)

Interlude: on numeration systems

- Numeration systems used in the History:

Tally sticks
Babylonian
Egyptian
Roman
Hindu-Arabic
(35000 BC)
(3100 BC)
(3000 BC)
(1000 BC)
(300 AD)

HH H H H H H H H H H H H HII
<<<<li
กกกกII
XLII
42

- Numeration systems used in Logic:

Peano: ss0

Church: $\quad \lambda x f . f($ $f(f(f(f(f(f(f(f(f(f(f(f x))$
Krivine: $\quad(\lambda n x f . f(n x f))(\lambda n x f . f(n \times f))((\lambda n x f . f(n \times f))((\lambda n x f . f(n \times f))((\lambda n x f . f(n x f))((\lambda n x f . f(n \times f))($ ($\lambda n x f . f(n \times f))((\lambda n x f . f(n x f))((\lambda n x f . f(n x f)))((\lambda n x f . f(n \times f))((\lambda n x f . f(n x f))((\lambda n x f . f(n \times f))($ $(\lambda n x f . f(n x f))((\lambda n x f . f(n \times f))((\lambda n \times f . f(n \times f))((\lambda n x f . f(n \times f))((\lambda n \times f . f(n \times f))((\lambda n \times f . f(n \times f))($ $(\lambda n \times f . f(n \times f))((\lambda n \times f . f(n \times f))($ $(\lambda n \times f . f(n \times f))((\lambda n \times f . f(n \times f))($ $(\lambda n x f . f(n \times f))((\lambda n x f . f(n \times f))((\lambda n \times f . f(n \times f))((\lambda n x f . f(n \times f))((\lambda n \times f . f(n \times f))((\lambda n \times f . f(n \times f))($ $(\lambda n x f . f(n x f))((\lambda n x f . f(n x f))((\lambda n x f . f(n x f))((\lambda n x f . f(n \times f))((\lambda n x f . f(n x f))((\lambda n x f . f(n x f))($

Primitive numerals

To get rid of Krivine numerals $\bar{n}=\bar{s}^{n} \overline{0} \quad$ (cf paleolithic numeration) we extend the machine with the following instructions:

- For every natural number $n \in \mathbb{N}$, an instruction $\widehat{n} \in \mathcal{K}$ with no evaluation rule (i.e. inert constant: pure data)

Intuition: $\quad \widehat{n} \star \pi \succ$ segmentation fault

- An instruction null $\in \mathcal{K}$ with the rules

$$
\text { null } \star \hat{n} \cdot u \cdot v \quad \succ \begin{cases}u \star \pi & \text { if } n=0 \\ v \star \pi & \text { otherwise }\end{cases}
$$

- Instructions $\check{f} \in \mathcal{K}$ with the rules

$$
\check{f} \star \widehat{n}_{1} \cdots \widehat{n}_{k} \cdot u \cdot \pi \quad \succ \quad u \star \widehat{m} \cdot \pi \quad \text { where } m=f\left(n_{1}, \ldots, n_{k}\right)
$$

for all the usual arithmetic operations

Primitive numerals

- Call-by-value implication, yet another definition:
Formulas
$A, B \quad::=$
$[e] \Rightarrow A$
with the semantics:

$$
\|\{e\} \Rightarrow A\|=\left\{\hat{n} \cdot \pi: n=e^{\mathbb{N}}, \pi \in\|A\|\right\}
$$

- Redefining the set of natural numbers:

$$
\begin{aligned}
& \mathbb{N}^{\prime}:=\{x: \forall Z(([x] \Rightarrow Z) \Rightarrow Z)\} \\
& \text { box }:=\lambda k \cdot k x \quad \forall x\left([x] \Rightarrow x \in \mathbb{N}^{\prime}\right) \\
& \text { box } \hat{n} \\
& \lambda n . n \lambda x . s ̌ x \text { box } \\
& \text { IIF } n \in \mathbb{N}^{\prime} \\
& \lambda n m \cdot n \lambda x \cdot m \lambda y \cdot(\check{\mp}) x y \text { box } \quad \| \vdash \quad\left(\forall x, y \in \mathbb{N}^{\prime}\right)\left(x+y \in \mathbb{N}^{\prime}\right) \\
& \text { rec_cbv }:=\lambda z_{0} z_{s} \text {. Y } \lambda r x \text {.null } x z_{0}\left((乞) \times \hat{1} \lambda y . z_{s} y(r y)\right) \\
& \text { II } \forall Z[Z(0) \Rightarrow \forall y([y] \Rightarrow Z(y) \Rightarrow Z(s(y))) \Rightarrow \forall x([x] \Rightarrow Z(x))] \\
& \text { rec }:=\lambda z_{0} z_{s} n \cdot n \lambda x \cdot r e c _c b v z_{0}\left(\lambda y z \cdot z_{s}(\operatorname{box} y) z\right) x \\
& \text { II } \forall Z\left[Z(0) \Rightarrow\left(\forall y \in \mathbb{N}^{\prime}\right)(Z(y) \Rightarrow Z(s(y))) \Rightarrow\left(\forall x \in \mathbb{N}^{\prime}\right) Z(x)\right]
\end{aligned}
$$

- Conclusion: $\mathbb{\|} \vdash \forall x\left(x \in \mathbb{N}^{\prime} \Leftrightarrow x \in \mathbb{N}\right)$
- Krivine's realizability can be seen as the composition of the Lafont-Reus-Streicher (LRS) translation with Kleene realizability:

$$
\text { CPS } \circ \text { Krivine }=\text { Kleene } \circ \text { LRS } \quad \text { [Oliva-Streicher 2008] }
$$

The dictionary					
Classical realizability (Krivine)	Lafont-Reus-Streicher translation				
Pole \Perp	Return formula R				
Falsity value $\\|A\\|$	Negative translation A^{\perp}				
$\\|A \Rightarrow B\\|:=\|A\| \cdot\\|B\\|$	$(A \Rightarrow B)^{\perp}:=A^{L R S} \wedge B^{\perp}$				
Truth value $\|A\|:=\\|A\\| \Perp$	$A^{L R S}:=A^{\perp} \Rightarrow R$				

- Through the CPS-translation, Krivine's extraction method in the Σ_{1}^{0}-case is exactly Friedman's trick (transposed to LRS)

Beware of reductionism!

- The decomposition holds only for pure classical reasoning (extra instructions are not taken into account)
- Classical realizers are easier to understand than their CPS-translations (and more efficient)
- Classical realizability is more than Kleene's realizability composed with the Lafont-Reus-Streicher translation

An image:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \quad \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

but can we deduce the properties of water from the ones of H_{2} and O_{2} ?

